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大学入試「整数問題」の類型とその解法
（補足）

ここでは本書の説明ではやや足りないと思われる部分について、また製本化した後に出題され
た入試問題の中から学習すべきであろうものを取り上げ解説する。（毎年入試問題に触れるにつ
れ、知の構築には完成などというものはなく、その都度自身のもつ体系を発展させなければ駄目
であることをつくづくと思い知らされる。）

9.1 数列の漸化式と剰余の周期性

ちょっとした言い訳になるが、次の問題は執筆段階であえて入れなかったものである。理由は
三つあって、テーマとしては例えば問題 3.13で扱っているため、そして(1)などは特にそうであ
るが数列の学習で目にする可能性が高い問題であること、さらには東大の過去問であったことで
ある。（東大志望者はあえて本書を手にしなくともこの問題を解くことになるはずという判断。）
　とはいえ 2010年度に東大以外の大学でこのテーマについての出題があった以上、本題を収録
しなかったことについてはちょっとした悔いがある。
　さて漸化式と剰余の周期性についてであるが、ここでは 10で割った余りを例に挙げて説明し
ておく。いま以下の漸化式で定まる {an}の各項を 10で割った余りがどうなるかを考えよう。
　　　 a1 = 1 , an+1 = 3a 2

n + 5

この漸化式を解いて一般項を求めるのはそう簡単ではない。また具体的に各項を並べても、あっ
という間に大きな数になり行き詰まってしまう。ここで重要になるのが 10k + r という表現であ
る。すなわち an = 10k + r であるとき
　　　 an+1 = 3(10k + r)2 + 5 = 10(30k2 + 6kr) + 3r2 + 5

となるので、r が an を 10で割った余りであるとき 3r2 + 5を 10で割った余りが an+1 を 10で
割った余りであることがわかる。そしてこれから
　　「al , am を 10で割った余りが同じならば al+1, am+1 を 10で割った余りは同じ」· · · (∗)
であることになる。ところで 10で割った余りは高々 10通りしかないので a1 から a11 について
10で割った余りを並べてゆくと、必ずある同じ数が現れる(→鳩の巣原理)。これと(∗)より {an}
の剰余について、ある部分から先は同じ余りの並びが繰り返されることがわかる。
　なお問題 9.1.1 の練習題の解答は動画にまとめてある。隣接 3 項間漸化式における剰余
の周期性についても解説しているので、あわせて確認して欲しい。web サイト「ky の書架」
(http://kynoshoka.com/) TOPページの最新情報にリンクがある。

問題 9.1.1 　
　 2次方程式 x2 − 4x + 1 = 0の 2つの実数解のうち大きいものを α , 小さいものを β とする。
n = 1 , 2 , 3 , · · · に対し、sn = αn + βn とおく。
（1）s1 , s2 , s3 を求めよ。また、n −≥ 3に対し、sn を sn−1 と sn−2 で表せ。
（2）sn は正の整数であることを示し、s2003 の 1の位の数を求めよ。
（3）α2003 以下の最大の整数の 1の位の数を求めよ。 （2003 東京大学文科）
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解答）
（1）解と係数の関係から α + β = 4 (= s1) , αβ = 1

　　　 ∴ s2 = α2 + β2 = (α + β)2 − 2αβ = 16 − 2 = 14 ,

s3 = α3 + β3 = (α + β)3 − 3αβ(α + β) = 64 − 12 = 52

　　また n −≥ 3のとき
　　　 αn + βn = (α + β)(αn−1 + βn−1) − αβ(αn−2 + βn−2)

= 4(αn−1 + βn−1) − (αn−2 + βn−2)

　より sn = 4sn−1 − sn−2

後半の別解）α は x2 − 4x + 1 = 0 の解より α2 − 4α + 1 = 0 で、両辺に αn−2 を掛けて
αn − 4αn−1 + αn−2 = 0 · · ·①

　　同様に βn − 4βn−1 + βn−2 = 0 · · ·② であり、① ,②を加えることで
　　　 sn − 4sn−1 + sn−2 = 0 , sn = 4sn−1 − sn−2

（2）s1 = 4 , s2 = 14 はいずれも正の整数である。また sk−2 , sk−1 がどちらも整数のとき
sk = 4sk−1 − sk−2 より sk も整数であるが、さらに x2 − 4x + 1 = 0の 2つの解 α , β はとも

　に正の数であり sk = αk + βk は正の整数である。よってすべての正整数 nについて sn が正
　の整数であることが数学的帰納法により示された。
　　次に s2003 の 1の位の数を考える。{sn}の各項について 1の位の数を順に並べた数列は周期
　 3で 4 , 4 , 2の繰り返しであることが数学的帰納法で示される。実際
　　　 P(n)「s3n−2 , s3n−1, s3nの 1の位の数は順に 4 , 4 , 2」
　とすると s1 = 4 , s2 = 14 , s3 = 52 より P(1) は正しく、P(k) が正しいと仮定すると

sn = 4sn−1 − sn−2 を n = 3k + 1 , 3k + 2 , 3k + 3について順に考えることで P(k + 1)も正
　しいことがわかる。
　　そして 2003 = 3 × 668 − 1より s2003 の 1の位の数は 4である。
注）後半の周期性は以下のように説明してもよい。すなわち sn+2 = 4sn+1 − sn · · ·③ より
　　　 sn+3 = 4sn+2 − sn+1 = 4(4sn+1 − sn) − sn+1 = 15sn+1 − 4sn

　　 ∴ sn+3 − sn = 15sn+1 − 5sn = 5(3sn+1 − sn)

　ここで s1 , s2 はともに偶数で、さらに③より {sn}のすべての項は偶数である。これと上式よ
　り sn+3 − sn は 10の倍数で sn , sn+3 の 1の位の数は等しい。
（3）s2003 = α2003 + β2003 , β2003 = s2003 − α2003 · · ·④

　　いま β = 2 −
√

3 より 0 < β < 1 , 0 < β2003 < 1である。これと④から
　　　 0 < s2003 − α2003 < 1 , s2003 − 1 < α2003 < s2003

　ここでさらに s2003 は整数である。よって α2003 以下の最大の整数は s2003 − 1であり、求める
　 1の位の数は 3

（練習）
　 0以上の整数 a1 , a2 があたえられたとき、数列 {an}を an+2 = an+1 + 6an により定める。
（1）a1 = 1 , a2 = 2のとき、a2010 を 10で割った余りを求めよ。
（2）a2 = 3a1 のとき、an+4 − an は 10の倍数であることを示せ。 （2010 一橋大学前期）
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9.2 ガウス記号

ガウス記号については本編６章で触れたとおりで、以下が成り立つことは重要であった。
　　　 a1)整数 N について［A］= N ⇐⇒ N −≤ A < N + 1 · · · (∗)
そしてこれから本書にある a2) , a3)の関係式が得られ、それを用いれば確かに 2010年度に東工
大で出題された整数問題(→問題 9.2.1)を解くことは出来る。しかし流れとしては微妙にややこ
しくなるので、(∗)をさらに一般化した次の関係も使えるようにしておきたい。（最新の入試問題
を目にする度に自らの至らなさを痛感する。毎年体系の再構築の繰り返しである。）

a1
′)［A］= B ⇐⇒ B −≤ A < B + 1かつ B は整数

例えば xの方程式［f(x)］= g(x)を解くのに y =［f(x)］, y = g(x)のグラフを考える方法も
あるが、上の関係を用いるとグラフを描くことなくよりわかりやすい xの条件を提示することが
可能になる。

問題 9.2.1 　
　 aを正の整数とする。正の実数 xについての方程式

　　　 (∗)　 x =
[

1
2

(
x +

a

x

)]
が解を持たないような aを小さい順に並べたものを a1 , a2 , a3 , · · · とする。ここに［ ］はガウ
ス記号で、実数 uに対し、［u］は u以下の最大の整数を表す。
（1）a = 7 , 8 , 9の各々について (∗)の解があるかどうかを判定し、ある場合は解 xを求めよ。
（2）a1 , a2 を求めよ。

（3）
∞∑

n=1

1
an
を求めよ。 （2010 東京工業大学）

解答）
（1）(∗) ⇐⇒ x −≤

1
2

(
x +

a

x

)
< x + 1かつ xは整数

⇐⇒ x −≤
a

x
< x + 2かつ xは整数

⇐⇒ x2 −≤ a < x2 + 2xかつ xは整数
⇐⇒ x2 −≤ a < (x + 1)2 − 1かつ xは整数 · · ·①

　すなわち①を a = 7 , 8 , 9のそれぞれについて考えればよく、(∗)は
　　　 a = 7ならば解をもち解は x = 2 , a = 8ならば解をもたない ,

　　　 a = 9ならば解をもち解は x = 3

　であることがわかる。
（2）どのような正の整数 a に対しても x2 −≤ a −≤ (x + 1)2 − 1 を満たす正の整数 x が存在する。
よって①を満たす xが存在しないような正の整数 aは小さい順に 22 − 1, 32 − 1, 42 − 1, · · ·
　であり an = (n + 1)2 − 1

　　∴ a1 = 3 , a2 = 8

（3）
n∑

k=1

1
ak

=
n∑

k=1

1
(k + 1)2 − 1

=
n∑

k=1

1
2

( 1
k

− 1
k + 2

)
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=
1
2

n∑
k=1

1
k

− 1
2

n∑
k=1

1
k + 2

=
1
2

(
1 +

1
2

− 1
n + 1

− 1
n + 2

)
　　∴

∞∑
n=1

1
an

= lim
n→∞

n∑
k=1

1
ak

=
1
2

(
1 +

1
2

)
=

3
4

（練習）*1

　［x2 + 3x］= 2xを満たす実数 xを求めよ。ここで［x］は xを超えない最大の整数である。

*1 x = −
3

2
,−1 , 0 ,

1

2
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2010 年度の入試問題から

問題 1

　 n を 2 以上の自然数として、階乗 n ! を素数の積で表すときに現れる 2 の個数を an とおく。
すなわち n !

2an
は奇数である。

（1） (2n)!
2nn !

は奇数であることを示せ。
（2） a2n − an を nを用いて表せ。
（3）n = 2k（k は自然数）のとき、an を nを用いて表せ。
（4） an < nを示せ。
（5） n

√
n !は無理数であることを示せ。 （滋賀医科大学）

（問題 1の解答）
（1）(2n)! = 1× 2× 3× · · ·× (2n− 1)× 2n = (2× 4× 6× · · ·× 2n){1× 3× 5× · · ·× (2n− 1)}

= 2n(1 × 2 × 3 × · · · × n){1 × 3 × 5 × · · · × (2n − 1)}

　　∴ (2n)!
2nn !

= 1 × 3 × 5 × · · · × (2n − 1)

　ここで上式の右辺は奇数であり、題意は示された。
（2）an = l（ lは 0以上の整数）とする。すなわちある整数mについて n !

2l
= 2m − 1 ,

　 n ! = 2l(2m − 1)であり、これと(1)から

　　　 (2n)!
2nn !

=
(2n)!

2n2l(2m − 1)
（ = 奇数）

　さらに（奇数）× (2m − 1)は奇数なので (2n)!
2n+l

は奇数である。
　　∴ a2n = n + l = n + an ‥‥（答）
注）an とは n !が 2で何回割り切れるか、その最大の回数である。これは本書問題 1.7のテーマ
　であるが、(2)はそこで説明した同様の方法で考えることも出来る。
　　　 1, 2 , 3 , 4 , · · · , 2n − 1, 2n（偶数 n個）

↓（偶数÷2）
1, 2 , 3 , · · · , n（この積が n !で、これは 2でちょうど an 回割り切れる。）

（3）a2i = bi として数列 {bi}を考える。(2)の結果より a2i+1 = a2i + 2i であり
　　　 bi+1 = bi + 2i（ i −≥ 1）
　また b1 = a2 = 1である。よって i −≥ 2について

　　　 bi = b1 +
i−1∑
j=1

(bj+1 − bj) = b1 +
i−1∑
j=1

2j = 1 + 2 + 22 + · · · + 2i−1 = 2i − 1

　なおこの結果は i = 1についても成り立つ。よって
　　　 n = 2k のとき an = bk = 2k − 1 = n − 1 ‥‥（答）

注）結局階差型の漸化式を解くことになる。　 a2 a4 a8 a16 · · · · · · a2k−1 a2kx x x x x

+2 +4 +8 +16　 · · · +2k−1　右のようになり k −≥ 2のとき
　　　 a2k = a2 + {2 + 4 + 8 + 16 + · · · + 2k−1} = 2k − 1

　で、この結果は k = 1についても正しい、というまとめ方で問題ないであろう。
（4）命題 P(n)「a2n < 2n , a2n+1 < 2n + 1」とする。また奇数 2n + 1は 2で割り切れないので
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　 (2n)!と (2n + 1)!
(

= (2n + 1)(2n)!
)
が 2で割り切れる回数は等しい。すなわち

　　　 a2n+1 = a2n（n −≥ 1）· · ·①
　 [Ⅰ] a2 = 1また①より a3 = a2 = 1であり P(1)は真である。
　 [Ⅱ] P(1) , P(2) , · · · , P(l)はすべて真とする。すなわち an < n（2 −≤ n −≤ 2l + 1）であるとき
　　(2)の結果および①より
　　　 a2l+2 = al+1 + (l + 1) < (l + 1) + (l + 1) = 2l + 2 , a2l+3 = a2l+2 < 2l + 2 < 2l + 3

　　であり P(l + 1)も真である。
　　以上 [Ⅰ][Ⅱ]より数学的帰納法により題意は示された。

（5） n
√

n ! は有理数と仮定する。すなわち n
√

n ! =
q

p
（p , q は互いに素な正の整数）である p , q

　が存在するとする。このとき n ! =
( q

p

)n

· · ·② であり
( q

p

)n

は整数であるが、p , q は互い

　に素であることから p = 1である。したがって②は n ! = qn · · ·③ である。
　　ここで n −≥ 2のとき n !は偶数であり q も偶数である。よってある整数 r が存在して q = 2r

　であり、③は n ! = (2r)n となる。ところがこれは n !が 2で割り切れる回数が n以上であるこ
　とを示しており an < nに反して不合理である。
　　以上より n

√
n !は無理数である。
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